
HashEx

VoidFarm

smart contract audit report

Prepared for:

VoidFarm

Authors: HashEx audit team

April 2021

https://www.void.farm/
https://hashex.org/

Contents

Disclaimer 3

Introduction 4

Contracts overview 4

Found issues 6

Conclusion 8

References 8

Appendix. Issues’ severity classification 9

2021-04-16 2/9

Disclaimer
This is a limited report on our findings based on our analysis, in accordance with good industry

practice as at the date of this report, in relation to cybersecurity vulnerabilities and issues in the

framework and algorithms based on smart contracts, the details of which are set out in this report.

In order to get a full view of our analysis, it is crucial for you to read the full report. While we have

done our best in conducting our analysis and producing this report, it is important to note that you

should not rely on this report and cannot claim against us on the basis of what it says or doesn’t

say, or how we produced it, and it is important for you to conduct your own independent

investigations before making any decisions. We go into more detail on this in the disclaimer below

– please make sure to read it in full.

DISCLAIMER: By reading this report or any part of it, you agree to the terms of this disclaimer. If

you do not agree to the terms, then please immediately cease reading this report, and delete and

destroy any and all copies of this report downloaded and/or printed by you. This report is provided

for information purposes only and on a non-reliance basis and does not constitute investment

advice. No one shall have any right to rely on the report or its contents, and HashEx and its

affiliates (including holding companies, shareholders, subsidiaries, employees, directors, officers,

and other representatives) (HashEx) owe no duty of care towards you or any other person, nor

does HashEx make any warranty or representation to any person on the accuracy or completeness

of the report. The report is provided "as is", without any conditions, warranties, or other terms of

any kind except as set out in this disclaimer, and HashEx hereby excludes all representations,

warranties, conditions, and other terms (including, without limitation, the warranties implied by

law of satisfactory quality, fitness for purpose and the use of reasonable care and skill) which, but

for this clause, might have effect in relation to the report. Except and only to the extent that it is

prohibited by law, HashEx hereby excludes all liability and responsibility, and neither you nor any

other person shall have any claim against HashEx, for any amount or kind of loss or damage that

may result to you or any other person (including without limitation, any direct, indirect, special,

punitive, consequential or pure economic loss or damages, or any loss of income, profits, goodwill,

data, contracts, use of money, or business interruption, and whether in delict, tort (including

without limitation negligence), contract, breach of statutory duty, misrepresentation (whether

innocent or negligent) or otherwise under any claim of any nature whatsoever in any jurisdiction)

in any way arising from or connected with this report and the use, inability to use or the results of

the use of this report, and any reliance on this report.

The analysis of the security is purely based on the smart contracts alone. No applications or

operations were reviewed for security. No product code has been reviewed.

2021-04-16 3/9

Introduction
HashEx was commissioned by the VoidFarm team to perform an audit of VoidFarm smart

contracts. The audit was conducted between April 12 and April 16, 2021.

The audited code is located in VoidFarm’s github repository [1]. The audit was performed after the

commit 508c815. A recheck was done after commit 1cc0311 [5]. There was limited

documentation available at voidfarm.gitbook.io.

Update: VoidToken deployed to BSC at 0x3C44eAf8b4eAEF6e48Bfc18Ee92412BE0b395746 and

MasterChef at 0xD72fF7178fb11141492Da457A1B3c4D5143b696c are identical to reviewed [5]

versions.

The purpose of this audit was to achieve the following:

● Identify potential security issues with smart contracts.

● Formally check the logic behind given smart contracts.

Information in this report should be used to understand the risk exposure of smart contracts, and

as a guide to improving the security posture of smart contracts by remediating the issues that

were identified.

Contracts overview

Address.sol

Similar to OpenZeppelin version of release v3.3 with pragma fixed to 0.6.12.

Context.sol

Similar to OpenZeppelin version of release v3.0 with pragma changed to 0.6.12.

Ownable.sol

Similar to a mix of OpenZeppelin’s v2.5 and v3.0 with pragma changed to 0.6.12.

ReentrancyGuard.sol

Similar to OpenZeppelin version of release v3.1 with pragma fixed to 0.6.12.

SafeMath.sol

Similar to OpenZeppelin version of release v3.1 with pragma changed to 0.6.12.

Timelock.sol

2021-04-16 4/9

https://github.com/VoidFarm/contracts/commit/508c815f86d47997f5e43531781f7ae5a4eb37b2
https://voidfarm.gitbook.io/void-farm/
https://bscscan.com/address/0x3c44eaf8b4eaef6e48bfc18ee92412be0b395746#code
https://bscscan.com/address/0xD72fF7178fb11141492Da457A1B3c4D5143b696c#code

Similar to Compound’s version with minor changes. Audited [2] by OpenZeppelin in 2019.

IBEP20.sol

Similar to Binance’s version with pragma changed to 0.6.12.

SafeBEP20.sol

Similar to OpenZeppelin version of release v3.3 with pragma changed to 0.6.12.

Migrations.sol

Migrations contract from Truffle project, unused.

Multicall.sol

Helper contract with functions for frontend.

VoidToken.sol

Implementation of BEP20 token with custom functionality.

MasterChef.sol

Similar to SushiSwap’s chef contract with modifications.

2021-04-16 5/9

https://github.com/compound-finance/compound-protocol/blob/master/contracts/Timelock.sol
https://github.com/binance-chain/bsc-genesis-contract/blob/master/contracts/bep20_template/BEP20Token.template

Found issues

ID Title Severity Response

01 BEP20 standard violation High Fixed

02 Lack of safeguards Medium Fixed

03 Unlimited mint by owner Medium Informed

04 Inconsistent mine rate Medium Fixed

05 Maximum supply can be exceeded Medium Fixed

06 Low severity issues & recommendations Low Fixed/Informed

#01 BEP20 standard violation (restriction of zero

amount transfer)

High

Implementation of transfer() function in VoidToken.sol does not allow to input zero transfer

amount as it’s demanded in ERC-20 [3] and BEP-20 [4] standards. This issue may break the

interaction with smart contracts that rely on full ERC20 support.

Update: VoidFarm team has removed require statement for transfer amount > 0 in commit

1cc0311 [5].

#02 Lack of safeguards Medium

dev() and setFeeAddress() functions in MasterChef.sol should require non-zero input

addresses.

Update: checks on non-zero addresses were added in commit 1cc0311 [5].

#03 Unlimited mint by owner Medium

mint() function in VoidToken.sol could be used by the owner of the contract to unlimitedly mint

new tokens. However, the logic of the MasterChef.sol demands ownership of the VOID token. We

recommend transferring ownership to MAsterChef contract as soon as possible after contract

deployment.

Update: ownership was transferred to the MasterChef contract in
0xfcf5e929e8d6b9bbd6457cc84fb39da1daeaa539e9618e7541c5464c5a37764d.

2021-04-16 6/9

https://bscscan.com/tx/0xfcf5e929e8d6b9bbd6457cc84fb39da1daeaa539e9618e7541c5464c5a37764d#eventlog

#04 Inconsistent mine rate Medium

Documentation on VoidFarm website claims that 0.01 Void mined per block. Around 288 Void

tokens per day, a very low emission. Actually, in MasterChef.sol a bigger amount is mined per block

as 0.01 Void is minted on the contract’s balance and then 0.0002 Void are minted to dev’s address.

Moreover, the minted amount per block can be adjusted by the owner at any time (capped by 10

Void per block).

Update: issue was fixed in commit 1cc0311 [5].

#05 Maximum supply can be exceeded Medium

Documentation on VoidFarm website claims that the max supply of Void is restricted by 30k.

However, it could surpass restriction as the reward update could take any amount unless the

current supply is less than 30k.

Update: issue was fixed in commit 1cc0311 [5]. It must be noted that with these changes if the

token supply is bigger than maxSupply parameter (for example, more tokens were preminted) the

MasterChef contract won’t work because the function updatePool will always fail.

#06 Low severity and general recommendations Low

1. VoidToken.sol L28-29 contains variables _taxFee and _burnFee that should be declared

constans. Update: issue was fixed in [5].

2. MasterChef.sol L55 contain maxSupply variable should be declared constant. Update:
issue was fixed in [5].

3. Documentation on VoidFarm website states a dev fee of 2%. Actually, it’s slightly less (2 of

102). Update: issue was fixed in [5].

4. Any accidental direct, not via deposit(), Void token deposits to MasterChef.sol will be

burned with the next withdraw() event.

5. Typo in a comment in MasterChef.sol L225. Update: issue was fixed in [5].

6. We recommend adding documentation to the smart contracts.

7. We recommend using tests before deployment. At least VoidToken and MasterChef
should be covered.

2021-04-16 7/9

https://voidfarm.gitbook.io/void-farm/
https://voidfarm.gitbook.io/void-farm/
https://github.com/VoidFarm/contracts/blob/508c815f86d47997f5e43531781f7ae5a4eb37b2/VoidToken.sol#L28
https://github.com/VoidFarm/contracts/blob/508c815f86d47997f5e43531781f7ae5a4eb37b2/MasterChef.sol#L55
https://github.com/VoidFarm/contracts/blob/main/MasterChef.sol#L225

Conclusion
It is crucially important for users before using the token to check that ownership of VoidToken is

transferred to MasterChef contract as farming via mint() won’t work and before this transfer

owner of the token can mint an unlimited number of tokens.

One high severity issue was found regarding BEP20 token standard violation.

Audit includes recommendations on the code improving and preventing potential attacks.

Update: high severity issue was fixed before deployment amongst various fixes of the issues from

the initial report.

Update: contracts deployed to BSC at 0x3C44eAf8b4eAEF6e48Bfc18Ee92412BE0b395746 and

0xD72fF7178fb11141492Da457A1B3c4D5143b696c are identical to the reviewed ones.

VoidToken’s ownership was transferred to the MasterChef contract in
0xfcf5e929e8d6b9bbd6457cc84fb39da1daeaa539e9618e7541c5464c5a37764d.

References
1. VoidFarm github repository

2. Timelock audit

3. ERC-20 standard

4. BEP-20 standard

5. VoidFarm fixes commit

2021-04-16 8/9

https://bscscan.com/address/0x3c44eaf8b4eaef6e48bfc18ee92412be0b395746#code
https://bscscan.com/address/0xD72fF7178fb11141492Da457A1B3c4D5143b696c#code
https://bscscan.com/tx/0xfcf5e929e8d6b9bbd6457cc84fb39da1daeaa539e9618e7541c5464c5a37764d#eventlog
https://github.com/VoidFarm/contracts/
https://blog.openzeppelin.com/compound-finance-patch-audit/
https://eips.ethereum.org/EIPS/eip-20
https://github.com/binance-chain/BEPs/blob/master/BEP20.md
https://github.com/VoidFarm/contracts/commit/1cc0311349c02592a1606700b83985513f8da1b5

Appendix. Issues’ severity classification
We consider an issue critical if it may cause the unlimited losses or breaks the workflow of the

contract and could be easily triggered.

High severity issues may lead to the limited losses or break interaction with users or other

contracts under very specific conditions.

Medium severity issues do not cause the full loss of functionality, but break the contract logic.

Low severity issues are typically nonoptimal code, unused variables, errors in messages. Usually

these issues do not need immediate reactions.

2021-04-16 9/9

